List of Figures

	List of Figures
Fig. No.	Figure Title
Fig 1	Areas of Responsibility of Water Authority/Registered Agent/Consumers
	(Direct Supply System)
Fig 2	Areas of Responsibility of Water Authority/Registered Agent/Consumers
	(Indirect Supply System)
Fig 3	Typical Installation of a 15mm diameter Water Meter
Fig 4	Meter Dimensions
Fig 5	Direct Supply System
Fig 6	Indirect Supply System
Fig 7	Non-pressure Type Heater
Fig 8	Cistern Type Water Heater
Fig 9	Instantaneous Gas Water Heater
Fig 10	Layout of Unvented Electric Thermal Storage Type Water Heater
Fig 11	Pressure Type Thermal Storage Water Heater
Fig 12	Direct Centralized Hot Water System
Fig 13	Indirect Centralized Hot Water System
Fig 14	Salt Water Flushing Supply System
Fig 15	Flushing Supply Storage Cistern - Mixed Supply
Fig 16	Layout Drawing for Sprinkler System
Fig 17	Layout Drawing for Improvised Sprinkler System
Fig 18	Layout Drawing for Fire Hydrant/Hose Reel System
Fig 19	Layout Plan of the Typical Installation of DN150 Street Fire Hydrant
Fig 20	Section of the Typical Installation of DN150 Street Fire Hydrant
Fig 21	Schematic Layout of Pressure Reducing Valves
Fig 22	Common Mistakes for Meter / Check Meter Positions
Fig 23	Common Mistakes for Inside Service
Fig 24	Common Mistakes for Sump and Pump System
Fig 25	Common Mistakes for Watering Flower Beds Plumbing System
Fig 26	Common Mistakes for Fire Service
Fig 27A	Master Meter – Schematic Layout (Sheet 1 of 2)
Fig 28A	Master Meter – Schematic Layout (Sheet 2 of 2)
Fig 29	Master Meter – Conceptual Design of Master Meter Room (Sheet 1 of 5)
Fig 30	Master Meter – Conceptual Design of Master Meter Room (Sheet 2 of 5)
Fig 31	Master Meter – Conceptual Design of Master Meter Room (Sheet 3 of 5)
Fig 32	Master Meter – Conceptual Design of Master Meter Room (Sheet 4 of 5)
Fig 33	Master Meter – Conceptual Design of Master Meter Room (Sheet 5 of 5)
Fig 34A	Master Meter – Schematic Layout of Master Meter in Private Road
Fig 35	Working Clearances for Check Meter Position
Fig 36	Typical Schematic Plumbing Diagram (Food Business (Restaurant) / Kitchen)

LIST OF SYMBOLS

LOOSE JUMPER TYPE STOPCOCK

GATE VALVE

STORAGE CISTERN

FLOAT SWITCH

BALL VALVE / FLOAT OPERATED VALVE

NON-RETURN VALVE / CHECK VALVE

M WATER METER

DRAW OFF POINTS - COLD WATER

_____TH DRAW OFF POINTS - HOT WATER

The point - Cold & HOT WATER

→ WASHOUT PIPE

O.F. OVERFLOW PIPE

PUMP SET

CALORIFIER

B BOILER

\triangleright	SINK
8	FLUSHING CISTERN & WATER CLOSET
<u>—©—</u>	CHECK METER POSITION (FOR CHECKING AND WASTE DETECTION PURPOSES)
G	INSTANTANEOUS GAS WATER HEATER
\bowtie	PRESSURE REDUCING VALVE (SMALL END DENOTES LOW PRESSURE)
Ď	PRESSURE RELIEF VALVE / SAFETY VALVE
M	TEMPERATURE RELIEF VALVE
Š	COMBINED TEMPERATURE AND PRESSURE RELIEF VALVE
\triangle	ANTI-VACUUM VALVE
\rightarrow	EXPANSION VESSEL
⊣ ø⊢	BUTTERFLY VALVE
UH	UNVENTED ELECTRIC THERMAL STORAGE WATER HEATER
VH	PRESSURE TYPE THERMAL STORAGE WATER HEATER
H	NON-PRESSURE TYPE HEATER

1. THE INSIDE SERVICE WITHIN THE LOT BOUNDARY IS MAINTAINED BY THE CONSUMER, EXCEPT THE COMMON PARTS OF THE INSIDE SERVICE BEING THE RESPONSIBILITY OF THE AGENT.

AREAS OF RESPONSIBILITY OF WATER AUTHORITY/AGENT/CONSUMERS (DIRECT SUPPLY SYSTEM)

NOTES:

- 1. ALL THREADING TO BS 21.
- 2. METER POSITION TO BE USED FOR LINED G.I., COPPER AND THERMOPLASTIC INSIDE SERVICE.

TYPICAL INSTALLATION OF A 15mm DIAMETER WATER METER

METER SIZE (mm)	15	25	40
DIMENSION (mm) A	200	311	346

METER SIZE (mm)	50	80	100	150
DIMENSION (mm)	310	413	407	500
A	310	413	483	500

METER DIMENSIONS

ESSENTIAL COMPONENTS OF A NON-PRESSURE TYPE HEATER

LAYOUT OF A NON-PRESSURE TYPE HEATER

NON-PRESSURE TYPE HEATER

SECTION THROUGH A CISTERN TYPE WATER HEATER

LAYOUT OF A CISTERN TYPE WATER HEATER

CISTERN TYPE WATER HEATER

INSTANTANEOUS GAS WATER HEATER CONNECTED DIRECTLY TO MAINS SUPPLY

INSTANTANEOUS GAS WATER HEATER CONNECTED INDIRECTLY TO MAINS SUPPLY

INSTANTANEOUS GAS WATER HEATER

LEGEND :

--- OPTIONAL

NOTES:

- 1. THE FACTORY TEST PRESSURE OF THE HEATER SHALL BE IN EXCESS OF 1.5 TIMES THE MAXIMUM STATIC PRESSURE AT THE MAINS WATER SUPPLY POINT.
- 2. A COMBINED TEMPERATURE AND PRESSURE RELIEF VALVE (OPTION 2) MAY BE USED IN LIEU OF A TEMPERATURE RELIEF VALVE AND A PRESSURE RELIEF VALVE (OPTION 1).
- 3. THE SAFETY DEVICES ARE UNDER THE CONTROL OF THE ELECTRICAL PRODUCTS (SAFETY) REGULATION ADMINISTERED BY THE ELECTRICAL AND MECHANICAL SERVICES DEPARTMENT.
- 4. EXPANSION VESSEL IS ONLY REQUIRED WHEN A NON-RETURN VALVE OR A PRESSURE REDUCING VALVE OF THE NON-BACKFLOW TYPE IS FITTED IN THE COLD WATER INLET.

LAYOUT OF UNVENTED ELECTRIC THERMAL STORAGE TYPE WATER HEATER

ESSENTIAL COMPONENTS OF A PRESSURE TYPE THERMAL STORAGE WATER HEATER

LAYOUT OF A PRESSURE TYPE THERMAL STORAGE WATER HEATER

NOTE: THIS TYPE OF HEATER SHALL BE SUPPLIED FROM A STORAGE CISTERN, EXCEPT IT IS INSTALLED IN FLATS SUPPLIED THROUGH THE INDIRECT OR SUMP AND PUMP SYSTEM.

PRESSURE TYPE THERMAL STORAGE WATER HEATER

DIRECT CENTRALISED HOT WATER SYSTEM

ESSENTIAL COMPONENT OF A CALORIFIER

INDIRECT CENTRALISED HOT WATER SYSTEM

DIRECT SALT WATER FLUSHING SUPPLY SYSTEM

INDIRECT SALT WATER FLUSHING SUPPLY SYSTEM

SALT WATER FLUSHING SUPPLY SYSTEM

LAYOUT DRAWING FOR IMPROVISED SPRINKLER SYSTEM

	WHERE CARRIAGEWAY CROSS FALL IS		
CARRIAGEWAY DESIGN SPEED (IN km/h)	AWAY FROM HYDRANT OR TOWARDS HYDRANT BUT NOT STEEPER THAN 2.5%	TOWARDS HYDRANT AND STEEPER THAN 2.5%	
≼50 >50 AND <80 ≽80	500 600 1000	600 600 1000	

NOTES: FOR ROADS (SUCH AS DISTRICT AND LOCAL DISTRIBUTOR ROADS, RURAL ROADS B AND FEEDER ROADS) WITH FOOTWAY ONLY AND WITHOUT VERGE, HYDRANTS CAN BE ERECTED CLOSER TO THE EDGE OF THE CARRIAGEWAY BUT NOT LESS THAN 200mm FOR ANY PART OF THE INSTALLATIONS. FOR ROADS WITH A SPEED LIMIT OF 70km/h OR ABOVE. STRICT COMPLIANCE WITH THE REQUIREMENTS OF THE ABOVE TABLE IS REQUIRED.

LAYOUT PLAN OF THE TYPICAL INSTALLATION
OF DN 150 STREET FIRE HYDRANT

NOTES:

- 1. A BYPASS ARRANGEMENT WITH THE PROVISION OF A SECOND PRESSURE REDUCING VALVE TO ENABLE ISOLATION OF ANY DEFECTIVE PRESSURE REDUCING VALVE FOR REPAIR AND REPLACEMENT IS USED.
- 2. THE PRESSURE REDUCING VALVES FOR USE WITH FRESH WATER SHOULD BE MANUFACTURED FROM MATERIALS SUITABLE FOR USE IN CONTACT WITH PORTABLE WATER.
- 3. THE PRESSURE REDUCING VALVES FOR USE WITH SALT WATER SHOULD BE MANUFACTURED FROM MATERIALS CAPABLE OF WITHSTANDING THE CORROSIVE EFFECT OF SALT WATER.

SCHEMATIC LAYOUT OF PRESSURE REDUCING VALVES

TYPICAL INSTALLATION DETAIL FOR METER/ CHECK METER POSITIONS IN METER CABINET

TYPICAL INSTALLATION DETAILS FOR METER
ARRANGED IN GROUP IN METER ROOM ON CORRIDOR

COMMON MISTAKES FOR METER/CHECK METER POSITIONS

TYPICAL ARRANGEMENT FOR INDIVIDUAL UNIT/FLAT IN RESIDENTIAL BUILDING

COMMON MISTAKES FOR INSIDE SERVICE

TYPICAL INSTALLATION DETAILS FOR STORAGE CISTERN AND WATER PUMPS

COMMON MISTAKES FOR SUMP AND PUMP SYSTEM

VPLD FOR WATERING FLOWER BEDS

LAYOUT PLUMBING ALIGNMENT PLAN FOR WATERING FLOWER BEDS (NOT TO SCALE)

ABBREVIATION:

WP WATER POINT

COMMON MISTAKES FOR WATERING FLOWER BEDS PLUMBING SYSTEM

9

VPLD FOR IMPROVISED SPRINKLER SYSTEM

VPLD FOR STREET FIRE HYDRANT SYSTEM

TYPICAL INSTALLATION DETAIL FOR FIRE HOSE REEL

<u>ABBREVIATION</u>:

S.F.H. STREET FIRE HYDRANT

COMMON MISTAKES FOR FIRE SERVICE

FIG. 26

TYPICAL CONFIGURATION OF MASTER METER

(AND OPTIONALLY WITH TMF)

(DUAL FIRE SERVICES CONNECTION CASE SHOWN AS EXAMPLE ONLY)

MASTER METER - SCHEMATIC LAYOUT (SHEET 1 OF 2)

TYPICAL CONFIGURATION OF MASTER METER (AND OPTIONALLY WITH TMF) (DUAL FIRE SERVICES CONNECTION CASE SHOWN AS EXAMPLE ONLY)

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS OTHERWISE SPECIFIED.
- THE SIZING OF THE PIPE IS DETERMINED BY THE FLOW RATE FOR FRESH WATER SUPPLY (PLUS TMF SUPPLY WHERE APPROPRIATE).

ABBREVIATIONS:

FW FRESH WATER MAIN

FS FIRE SERVICES MAIN

TMF TEMPORARY MAIN FOR FLUSHING

NRV NON-RETURN VALVE

MASTER METER - SCHEMATIC LAYOUT (SHEET 2 OF 2)

FIG. 28A

FRONT ELEVATION OF MASTER METER ROOM

MASTER METER - CONCEPTUAL DESIGN OF MASTER METER ROOM (SHEET 1 OF 5)

SECTIONAL PLAN OF MASTER METER ROOM (NON-RETURN VALVE NOT SHOWN)

(REDUCERS, NON-RETURN VALVES AND RESERVED SALT WATER INTERNAL MAIN WHERE APPROPRIATE NOT SHOWN)

MASTER METER - CONCEPTUAL DESIGN OF MASTER METER ROOM (SHEET 2 OF 5)

FIG. 30

<u>SECTION A - A OF MASTER METER ROOM</u> (NON-RETURN VALVE NOT SHOWN)

(REDUCERS, NON-RETURN VALVES AND RESERVED SALT WATER INTERNAL MAIN WHERE APPROPRIATE NOT SHOWN)

MASTER METER - CONCEPTUAL DESIGN OF MASTER METER ROOM (SHEET 3 OF 5)

SECTION B - B OF MASTER METER ROOM (NON-RETURN VALVE NOT SHOWN)

(REDUCERS, NON-RETURN VALVES AND RESERVED SALT WATER INTERNAL MAIN WHERE APPROPRIATE NOT SHOWN)

MASTER METER - CONCEPTUAL DESIGN OF MASTER METER ROOM (SHEET 4 OF 5)

FIG. 32

MASTER METER OF VARIOUS SIZES

METER TYPE	SIZE	DIMENSIONS (mm)		
WEIEN THE		Α	В	С
SINGLE JET / COMPOUND (IN-LINE) / PISTON	50	300	141	450
	80	350	360	719
	100	350	370	729
VOLTMAN	150	500	390	899
	200	560	410	979
COMPOUND (BY-PASS)	250	450	440	899
	300	500	450	959

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES.
- 2. THIS SET OF DRAWINGS SHALL BE READ IN CONJUNCTION WITH THE HONG KONG WATERWORKS STANDARD REQUIREMENT FOR PLUMBING INSTALLATION IN BUILDING. IN PARTICULAR, THE REQUIREMENT RELATED TO INSTALLATION OF METER AS SPECIFIED IN CHAPTER 1.
- 3. UNIVERSAL BEAM(S) SHALL BE ABLE TO LIFT UP 2.5 TIMES THE WEIGHT OF THE METER.
- 4. THE CENTRE-LINE OF THE PIPEWORK MUST BE HORIZONTAL.
- 5. ALL NEWLY LAID WATER MAINS MUST BE CLEANED AND STERILIZED BEFORE THE INSTALLATION OF SPECIFIED METER OR PRODUCT HAVING EQUIVALENT FUNCTIONS OR PERFORMANCE INSIDE THE ROOM.
- 6. DRAIN PIPE FOR METER ROOM SHALL BE PROVIDED.
- 7. A MINIMUM OF STRAIGHT PIPE UPSTREAM AND DOWNSTREAM FROM THE FLANGES OF THE MASTER METER POSITION SHALL BE PROVIDED AS FOLLOWS:—

METER TYPE	UPSTREAM	DOWNSTREAM
VOLTMAN / COMPOUND (BY-PASS)	10D	5D
SINGLE JET / COMPOUND (IN-LINE) / PISTON	5D	2D

WHERE D IS THE NOMINAL DIAMETER OF THE MASTER METER.

- 8. DIMENSION 'A' AND 'B' SHOWN IN THE TABLES ARE FOR INDICATION ONLY, EXACT DIMENSION TO BE DETERMINED ON SITE.
- 9. A RESERVED SALT WATER INTERNAL MAIN SHALL BE PROVIDED FOR FUTURE CONVERSION OF FLUSHING SUPPLY FROM TMF TO SALT WATER.
- 10. WHERE TMF SUPPLY IS GIVEN, A COMMUNAL TMF METER SHALL BE PROVIDED TO EACH INDIVIDUAL BLOCK OF BUILDING.
- 11. SIZE OF BY-PASS PIPE SHALL BE AS FOLLOWS :-

SIZE OF SUPPLY MAIN	SIZE OF BY-PASS MAIN
LESS OR EQUAL TO DN150	DN100
GREATER OR EQUAL TO DN200	DN150

TYPICAL CONFIGURATION OF MASTER METER WHERE INTERNAL ROAD CONSTRUCTED BY DEVELOPMENT AND TO BE HANDED OVER TO GOVERNMENT IN A DEFINITE FUTURE (OPTIONALLY WITH TMF)

NOTES:

1. FOR GENERAL ARRANGEMENT OF MASTER METER REFER TO DRAWING NO. SK20268/2.

LEGEND AND ABBREVIATIONS:

FW FRESH WATER MAIN

FS FIRE SERVICES MAIN

TMF TEMPORARY MAIN FOR FLUSHING

(M) MASTER METER AT TRANSITIONAL PERIOD

PERMANENT MASTER METER WILL BE INSTALLED JUST BEFORE THE HANDOVERING OF INTERNAL ROAD.

INTERNAL ROAD TO BE HANDED OVER TO GOVERNMENT

MASTER METER — SCHEMATIC LAYOUT OF MASTER METER IN PRIVATE ROAD

FIG. 34A

WORKING CLEARANCES FOR CHECK METER POSITION

<u>Typical Schematic Plumbing Diagram (Food Business (Restaurant) / Kitchen)</u>

