TEST REPORT

Information Provided by Custome Customer:	<u>er</u>	<u>Lab. Information</u> Report No.	:
Address :		Issue Date	1
		No.	:
Gate Valve with	tile Iron Copper Alloy Seated n Cap Top operated, PN16 & DN450	Lab. No.	:
(Brand Name	, Model no,)	Page No.	: 1 of 6
Results of testing conducted on DN450 are as follows:	the ductile iron copper alloy seated g	ate valve with cap to	p operated, PN16 &
1.0) Period of tests :			
2.0) Applicant document :	Dimensional measurement Face to face dimension and to 1:2004 and manufacturer's draw Maximum height dimension to manufacturer's drawing Flange (PN16) dimensions and BS EN 1092-2:1997 and manufacturer's drawing Hydrostatic Pressure test Leak-tightness of shell to internate of BS EN 1074-2:2000 & Annex Seat tightness at high different 5.2.2.1, 5.2.3, Annex B & C of BS Strength test Resistance of valve to operating B of BS EN 1074-2:2000 Coating test (Fusion bonded epoxy) Thickness measurement to clause manufacturer's drawing Tensile strength test Spheroidal graphite cast iron (drawing GJS-500/7 of BS EN 1563:2011) Chemical composition analysis	clause 4.2.3 of Batolerances to figure acturer's drawing all pressure test to clause A of BS EN 1074-1: all pressure with MS EN 1074-2:2000 load (mST) to clause see 4.4 of BS 5163-1.	S 5163-1:2004 and 6, table 5, 9 & 13 of ause 5.1.1 & 5.2.1.1 2000 OT to clause 5.1.1, e 5.1.4, Annex A & 2004 and

Stainless steel stem material to grade 1.4057 of BS EN 10088-3:2014
Copper alloy stem nut material to grade CC491K of BS EN 1982:2008
Copper alloy seat ring material to grade CC491K of BS EN 1982:2008

Our r	eport no.		Page 2 of 6
3.0)	Sample details		
	Manufacturer		
	Brand		
	Model no,		
	Country of Origin		

Sample descriptions	Nominal size (mm)	Marking
brand, ductile iron gate valve, stainless steel stem, copper alloy seated, cap top operated, PN16, externally & internally coated with fusion bonded epoxy in blue color	DN450	

4.0) Scope of testing

- 4.1) Dimensional measurement
- 4.2) Leak-tightness of shell to internal pressure test
- 4.3) Seat tightness at high differential pressure with MOT
- 4.4) Resistance of valve to operating load (mST)
- 4.5) Seat tightness at high differential pressure with MOT after resistance of valve to operating load (mST)
- 4.6) Coating thickness measurement (Fusion bonded epoxy)
- 4.7) Tensile strength test (Spheroidal graphite cast iron body material)
- 4.8) Chemical composition analysis (Stainless steel stem material)
- 4.9) Chemical composition analysis (Copper alloy stem nut material)
- 4.10) Chemical composition analysis (Copper alloy seat ring material)

5.0) Test results

5.1) Dimensional measurement (all dimensions are in mm)

Noi	minal size	Face to face dimension (L)	Maximum height dimension (H)	Remark	
DN450	Requirements	432 +3/-3	1390	Assentable	
DN450	Results	433	1073	Acceptable	

	Flanç	ge (PN16)	dimensio	onal measu	rement to I	BS EN 1092-2	:1997		
Nor	ninal size	D	к	d	b	f	n	L	Remark
DNASO	Requirements	640	585	548 -4.5	30+4/-3	4 ^{1 mm min.}	20	31	A t - l- l
DN450	Results	638	585	548	33	3.5	20	31	Acceptable

5.2) Leak-tightness of shell to internal pressure test

Nominal size	Test pressure (MPa)	Test duration (minute)	Test results	Remark	
DN450	2.5	10	No signs of leakage, sweating or any other kind of failure was found during the test	Acceptable	

5.3) Seat tightness at high differential pressure with MOT

Nominal size	Test pressure (MPa)	Test duration (minute)	Applied MOT (Nm)	Test results	Remark
DN450	1.76	10	510	No visually detectable leakage exceeded the requirements of rate B of BS EN 12266-1:2012	Acceptable

5.4) Resistance of valves to operating load (mST)

Nominal size	Applied mST (Nm)	Applied bending moment (Nm)	Test duration (minute)	Test results	Remark
DN450	2550	1500	10	Without any damage likely to impair their functional capabilities beyond the limits specified	Acceptable

Our report no.

Page 4 of 6

5.5) Seat tightness at high differential pressure with MOT after resistance of valve to operating load (mST)

Nominal size	Test pressure (MPa)	Test duration (minute)	Applied MOT (Nm)	Test results	Remark
DN450	1.76	10	510	No leakage exceeded the requirements of rate B of BS EN 12266- 1:2003	Acceptable

5.6) Coating thickness measurement (Fusion bonded epoxy)

	Requirements & test results (μm)					
Nominal	Internal		Exter	rnal	Remark	
size -	Minimum Requirement	Results	Minimum Requirement	Results		
DN450	250	582-761	250	388-847	Acceptable	

5.7) Tensile strength test (Spheroidal graphite cast iron material)

Nominal size	0.2% proof strength (320MPa min.)	Elongation (7% min.)	Remark	
DN450	355	508	15	Acceptable

5.8) Chemical composition analysis (Stainless steel stem)

Nominal size	e Test results, % (elements)							
DN450	Carbon C	Silicon Si	Manganese Mn	Phosphorus P	Sulphur S	Chromium Cr	Nickel Ni	Remark
Requirements -	0.19	0.41	0.47	0.034	<0.004	16.9	2.21	Pass
Grade 1.4057 of BS EN 10088-3:2014, Table 5	0.12-0.22	1.00 max.	1.50 max.	0.040 max.	0.030 max.	15.0-17.0	1.50-2.50	

Our report no.

5.9) Chemical composition analysis

5.9.1) For copper alloy stem nut material

		Silicon	<0.01 Pass		k. 0.01 max.
		Antimony Sb	<0.02		0.25 max.
		Sulphur S	<0.02		0.10 max.
		lron Fe	<0.1		0.3 max.
%		Aluminium Al	<0.01		0.01 max.
Test results, %	(elements)	Zinc Zn	4.8	4.0-6.0	
Ĺ		Tin Sn	4.2	4.0-6.0 4.0-6.0	
	-	Lead Pb	5.7		
		Phosphorus P	0.03	0.10 max.	
		Nickel Ni	1.4	2.0 max.	
		Copper	83.7		83.0-87.0
Nominal size		DN450	Requirements - Grade CC491K of BS EN 1982:2008 Table 23b		

5.9.2) For copper alloy seat ring material

7				ř	Test results, %	%					
					(elements)		The second second	The second secon			Romark
Copper	Nickel	Nickel Phosphorus	Lead	Tin	Zinc	Aluminium	Iron	Sulphur	Antimony	Silicon	NG III
Cu	Z	α.	Pb	Sn	Zn	AI	Fe	S	Sb	Si	
83.3	1.4	0.03	6.0	4.3	4.8	<0.01	<0.1	<0.02	<0.02	<0.01	Pass
3.0-87.0	83.0-87.0 2.0 max.	0.10 max.	4.0-6.0	4.0-6.0	4.0-6.0	0.01 max.	0.3 max.	0.10 max.	0.25 max.	0.01 max.	

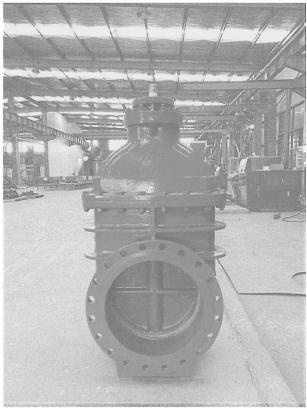
Our report no.

Page 6 of 6

6.0) Summary of results (applied only to the samples tested)

Dimensional measurement:SatisfactoryHydrostatic pressure test:SatisfactoryStrength test:SatisfactoryCoating thickness measurement:SatisfactoryTensile strength test:SatisfactoryChemical composition analysis:Satisfactory

7.0) Tested & reported by


Approved Signatory

Our report no.

Approval Number: Test Report:

Water Regulations Advisory Scheme Ltd.
Unit 13,
Willow Road,
Pen y Fan Industrial Estate,
Crumlin,
Gwent,
NP11 4EG

WATER REGULATIONS ADVISORY SCHEME LTD. (WRAS) MATERIAL APPROVAL

The material referred to in this letter is suitable for contact with wholesome water for domestic purposes having met the requirements of BS6920-1:2000 and/or 2014 'Suitability of non-metallic products for use in contact with water intended for human consumption with regard to their effect on the quality of the water'.

The reference relates solely to its effect on the quality of the water with which it may come into contact and does not signify the approval of its mechanical or physical properties for any use.

COATINGS, PAINTS & LININGS - FACTORY APPLIED PIPE & FITTINGS COATINGS.

5030

`R2 Red & R2 Blue`. Factory applied epoxy powder coatings. Apply as per manufacturer's instructions for use revision no: 1 dated July 5th 2016. Cure for 10 minutes@200°C. For use with water up to 80°C. This material is only approved for the curing conditions that appear on the approval. If the cure conditions are varied from those specified on the approval then the material is not covered by the scope of the approval.

not covered by the scope of the approval.		
APPROVAL NUMBER: APPROVAL HOLDER:		
The Scheme reserves the right to review approval. Approval is valid between June 2016 and June 2021		
An entry, as above, will accordingly be included in the Water Fittings Director passed full tests of effect on water quality".	ectory on-line under the section hea	ided, "Materials which
The Directory may be found at: www.wras.co.uk/directory		
Yours faithfully		

Approvals & Enquiries Manager Water Regulations Advisory Scheme

WRAS MATERIAL APPROVAL - MATERIALS WHICH HAVE PASSED FULL TESTS OF EFFECT ON WATER QUALITY

The material referred to in this letter is suitable for contact with water for domestic purposes. Approval of this material does not signify the approval of its mechanical or physical properties for any use.

Manufacturers or applicants may only quote in their sales literature terms which are used in this letter, namely that; 'the material as listed, having passed the tests of effect on water quality, is suitable for use in contact with wholesome water'

This may be abbreviated to 'Water Regulations Advisory Scheme - Approved Material' or 'WRAS Approved Material'.

The scope of an Approval does not extend to rebranded materials unless otherwise agreed by the Scheme.

Use of the WRAS Approved Material Logo

Approval holders may use the WRAS Approved Material logo and make reference to any approval issued by WRAS Ltd. in respect of a particular material or range of materials provided the approval is, and remains valid.

Approval holders are entitled to use the logo on the packing, promotional literature and point of sale advertising Approved Materials.

Modifications to existing Approvals

It is a condition of WRAS Material Approval that NO changes or modifications to the Approved Material, be made without the Approval Holder first notifying WRAS Ltd. Full details of the proposed changes must be provided to the Scheme. Failure to comply with this condition will immediately invalidate a previously granted Approval.

Re-Approval

WRAS will write to you 1 year before the approval expires asking whether you would like to renew it. Please complete the relevant section of the MA3 application form which will be included with the letter and return to WRAS (via e-mail or post).

Please note it is the responsibility of the Approval Holder to ensure the Approval remains valid. WRAS Ltd. accepts no liability for the delay in granting approval where this is caused by circumstances outside of the Scheme's control.

Approval Number: Test Report:

Water Regulations Advisory Scheme Ltd.
Unit 13,
Willow Road,
Pen y Fan Industrial Estate,
Crumlin,
Gwent,
NP11 4EG

WATER REGULATIONS ADVISORY SCHEME LTD. (WRAS) <u>MATERIAL APPROVAL</u>

The material referred to in this letter is suitable for contact with wholesome water for domestic purposes having met the requirements of BS6920-1:2000 and/or 2014 'Suitability of non-metallic products for use in contact with water intended for human consumption with regard to their effect on the quality of the water'.

The reference relates solely to its effect on the quality of the water with which it may come into contact and does not signify the approval of its mechanical or physical properties for any use.

approval of its modification physical proportios for any use.	
RUBBERS - ETHYLENE PROPYLENE DIENE MONOMER (EPDM) - MATERIAL ONLY. 53	65
rubber materials. Shore hardness between 50 & 88 Shore A. Tested in-radius size 1.0mm. For use with water up to 60°C.	
APPROVAL NUMBER: APPROVAL HOLDER:	
The Scheme reserves the right to review approval. Approval Is valid between December 2016 and December 2021	
An entry, as above, will accordingly be included in the Water Fittings Directory on-line under the section headed, "Materials whi have passed full tests of effect on water quality".	ch
The Directory may be found at: www.wras.co.uk/directory	
Yours faithfully	
Approvals & Enquiries Manager	

Water Regulations Advisory Scheme

WRAS MATERIAL APPROVAL - MATERIALS WHICH HAVE PASSED FULL TESTS OF EFFECT ON WATER QUALITY

The material referred to in this letter is suitable for contact with water for domestic purposes. Approval of this material does not signify the approval of its mechanical or physical properties for any use.

Manufacturers or applicants may only quote in their sales literature terms which are used in this letter, namely that; 'the material as listed, having passed the tests of effect on water quality, is suitable for use in contact with wholesome water'

This may be abbreviated to 'Water Regulations Advisory Scheme - Approved Material' or 'WRAS Approved Material'.

The scope of an Approval does not extend to rebranded materials unless otherwise agreed by the Scheme.

Use of the WRAS Approved Material Logo

Approval holders may use the WRAS Approved Material logo and make reference to any approval issued by WRAS Ltd. in respect of a particular material or range of materials provided the approval is, and remains valid.

Approval holders are entitled to use the logo on the packing, promotional literature and point of sale advertising Approved Materials.

Modifications to existing Approvals

It is a condition of WRAS Material Approval that NO changes or modifications to the Approved Material, be made without the Approval Holder first notifying WRAS Ltd. Full details of the proposed changes must be provided to the Scheme. Failure to comply with this condition will immediately invalidate a previously granted Approval.

Re-Approval

WRAS will write to you 1 year before the approval expires asking whether you would like to renew it. Please complete the relevant section of the MA3 application form which will be included with the letter and return to WRAS (via e-mail or post).

Please note it is the responsibility of the Approval Holder to ensure the Approval remains valid. WRAS Ltd. accepts no liability for the delay in granting approval where this is caused by circumstances outside of the Scheme's control.